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Weighted Haar VVavelet-Like Basis

for Scattering Problems
TV. y. Tarn, Member, IEEE

Abstract-A class of wavelet-like basis functions orthonormal
to the oscillatory functions with spatial frequency near the free

space propagation constant is introduced to solve the scattering
of a transition matrix (TM)-polarized plane wave due to a

metallic strip. The electric field integral equation (EFIE) for the
unknown surface current distribution is formulated. The method

of moments with rectangular pulse basis functions and point

matching is applied to dkcretize the integral equation into a
matrix equation. The dense impedance matrix is transformed to a
sparse matrix using compact support wavelet-like basis functions.
The effects of the discretization size on the performance of the
wavelet-like basis functions are presented.

I. INTRODUCTION

I N THE LAST FEW YEARS, wavelet analysis has drawn

a great attention in both applied mathematics and many

engineering disciplines because of its multiresolution property

[1]. When wavelets are employed as a basis set, the solution

of integral equation arising in electromagnetic can be sped up

by changing the dense impedance matrices to sparse matrices

[2], [3]. Problems still arise, however, because most of the

wavelets developed by mathematics community [4], [5] are not

tailored for electromagnetic problems, which involve oscilla-

tory kernels. For example, in order to reduce the oscillation of

the discretized impedance mat~x, the discretization of 0.03A,

which is much smaller than the conventional discretization

size, 0.1 ~, was used in [6] to solve a 90° dihedral comer

reflector under a transition matrix (TM) -polarized plane-wave

incident. ‘

In this letter, a class of wavelet-like basis functions is

introduced to solve the scattering of a TM-polarized plane

wave due to a metallic strip. The basis functions have the

following properties: 1) compact support with different length

scale and 2) all but k basis orthonormal to k weighting

functions.

II. THEORY

A metallic strip illuminated by a TM-polarized plane wave

is shown in Fig. 1. The z-directed surface current distribution

J= (~’) on the strip is related to the incident field by an electric

field integral equation (EFIE)
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Fig. 1. A TM-polarized plane wave incident on a metallic strip.

where L represents the surface of the strip. Expanding the

surface current distribution ~. (~’ ) in uniform rectangular

pulse basis and point matching at the centers of the pulse

basisx~, i=l,2, ..., n, the resulting equation gives

[Z][a] = [v] (2)

where [a] is the column matrix for the coefficient of the cument

basis and [Z] is the dense impedance matrix.

The matrix equation (2) is then transformed into wavelet

domain [Z’] [a’] - = [V’] where [Z’] = [u] [Z] [U]T, [a’] =

[CT][a], and [V’] = [U] [V] and the rows of [u] are wavelet-like
basis. Because of the compact support property of the wavelet-

like basis, there are only kn[log2 (n/k)+ 1] nonzero elements

in the matrix U where k is the number of weighting functions

used so that the number of operations for the multiplication

of the dense impedance matrix with the wavelet basis matrix

could be implemented by either a sparse matrix solver or a

tailored routine.

In this letter, the wavelet-like basis is constructed based

on the multiresolution decomposition of the weighted Haar

functions. For a discrete set of points {xl, X2,”””, Xn } Where

n = Zm ~, ,lc and rn are positive integers. A k-dimensional

vector space V. spanned by the Haar functions weighted with

functions TVj (xi) is defined as

V. = span{ (~j(xl), wj(~z),. “” ,

Wj($n)) \j= 1,2,..., k}! (3)

We define another 2k-dimensional vector space V_l, which

is also spanned by the weighted Haar functions Wj (xi), j =
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Fig.2. Wavelet-like basis with different suppofi, n=128discretization points, andk=4and their Fourier timsfom. (a) Alpert's waveless, (b)weigh@d
Ham wavelets, (c) Fourier transform of the Alpert’s wavelets, and (d) Fourier transform of the weighted Haar wavelets.

1,2, . . ..k. on {rl,xz,...,~niz} and {r~iz+l,zz,...,x~}.

The decomposition process is repeated until we get the vector

space V–m, which is the entire n-dimensional vector space. As

the vector space V_i is a subspace of vector space V–t–l, i.e.,

vocv_lc.. .cm–m (4)

an orthogonal compliment T–i of V–z is defined such that

V_i_l = T_i @ V_;. Therefore, the entire vector space V-m

can be decomposed as follows:

V.m = T1–m @ Vi–m

= T1.m @ T2–7n @ Vz–m

= T1–rn @ T2.7n @ T3.rn (E V3W72

@

●

= T1–m (B Tz.m @T3_m @ . . . @T_l @V–l

= Tl_m f3T2_m @T3_7n @ . . . @T_l @T(I @Vo. (5)

The implementation of the multiresolution decomposition is

based on the Gran-Schmidt orthogonalization process.

III. RESULTS

In this section, the proposed wavelet-like basis are em-

ployed to transform the impedance matrix for the scattering

problem. The weighted functions ~j (LCi) used are cos[ko~ .

(1 – 0.4&)~], j = 1,2,. ~. , 2k. Some weighted wavelet

basis vectors using the oscillatory functions as weighting

functions are shown in Fig. 2(c)–(d). The Alpert’s wavelet

basis vectors, in which the polynomial z~–l are used as

the weighting function, are also shown in Fig. 2(a) and (b).

It shows that some basis vectors of Alpert’s wavelet have

significant components in high spatial frequency, so that tie

amplitude of the impedance matrix elements projected cm

these vector are large. For the weighted wavelet-like basis,

the spatial frequency components near k. are reduced.

The transformed impedance matrix is thresholded by ze-

roing elements of the impedance matrix with magnitude less

than a tolerance times the maximum element. The percentage

of sparsity (S) and percentage relative error (s) are defined by

S=$x loo%

and

(6)

(’7)

where no is the zero elements after thresholding, J; is the

surface current distribution obtained with thresholding, and IIoII

denotes the L2 norm. A typical transformed matrix obtained

using the weighted Haar wavelet-like basis is shown in Fig. 3.

In Fig. 4, the sparsity versus solution error of the problem

is plotted for both weighted wavelet-like basis functions and

Alpert’s wavelet-like basis functions. Its shows that the spar-

sity of the matrix using Alpert’s wavelet-like basis is less than

20% when the discretization size is 0.2A. The results show
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3. Wavelet-domain impedance matrix for a TM-polarized plane wave incident on a metallic strip with length 12. 8A0. The strirr is dkcretized into
pulses and k = 8 is used.
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Flg.4. Spmsity of thewavelet domtinimpedance matixfor a~-poltized
plane wave incident on a metallic strip as a function of solution error.
n = 128, k = 8,Az = 0.1,0.15 and 0.2A. Solid circle: weighted Haar
wavelec hollow circle Alpert’s wavelet.

that the nonzero elements could be increased using tailored

wavelet basis instead of using the conventional wavelet basis

with vanishing moments, such as Alpert’s wavelet basis and

Daubechies’ wavelet basis.

IV. CONCLUSION

The use of the weighted Haar wavelet-like basis to reduce

the impedance matrix for a TM-polarized plane wave incident

on a metallic strip is demonstrated. The sparsity of the present

problem using weighted Haar wavelet-like basis is higher than

using Alpert’s wavelet basis especially for large discretization

size. In addition, the use of tailored wavelet basis should be

extended to two- or even three-dimensional problems.
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