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Weighted Haar Wavelet-Like Basis
for Scattering Problems

W. Y. Tam, Member, IEEE

Abstract—A class of wavelet-like basis functions orthonormal
to the oscillatory functions with spatial frequency near the free
space propagation constant is introduced to solve the scattering
of a tramsition matrix (TM)-polarized plane wave due to a
metallic strip. The electric field integral equation (EFIE) for the
unknown surface current distribution is formulated. The method
of moments with rectangular pulse basis functions and point
matching is applied to discretize the integral equation into a
matrix equation. The dense impedance matrix is transformed to a
sparse matrix using compact support wavelet-like basis functions.
The effects of the discretization size on the performance of the
wavelet-like basis functions are presented.

1. INTRODUCTION

N THE LAST FEW YEARS, wavelet analysis has drawn

a great attention in both applied mathematics and many
engineering disciplines because of its multiresolution property
[1]. When wavelets are employed as a basis set, the solution
of integral equation arising in electromagnetics can be sped up
by changing the dense impedance matrices to sparse matrices
[2], [3]. Problems still arise, however, because most of the
wavelets developed by mathematics community [4], [5] are not
tailored for electromagnetic problems, which involve oscilla-
tory kernels. For example, in order to reduce the oscillation of
the discretized impedance matrix, the discretization of 0.03A,
which is much smaller than the conventional discretization
size, 0.1\, was used in [6] to solve a 90° dihedral corner
reflector under a transition matrix (TM)-polarized plane-wave
incident. ‘ ‘

In this letter, a class of wavelet-like basis functions is
introduced to solve the scattering of a TM-polarized plane
wave due to a metallic strip. The basis functions have the
following properties: 1) compact support with different length
scale and 2) all but k basis orthonormal to %k weighting
functions. :

II. THEORY

A metallic strip illuminated by a TM-polarized plane wave
is shown in Fig. 1. The z-directed surface current distribution
J, (") on the strip is related to the incident field by an electric
field integral equation (EFIE)
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Fig. 1. A TM-polarized plane wave incident on a metallic strip.

where L represents the surface of the strip. Expanding the
surface current distribution Jz(7’ ) in uniform rectangular
pulse basis and point matching at the centers of the pulse
basis z;, 7 = 1,2,---,n, the resulting equation gives

[Z]a] = [V] @

where [a] is the column matrix for the coefficient of the current
basis and [Z] is the dense impedance matrix.

The matrix equation (2) is then transformed into wavelet
domain [Z')[a’] = [V'] where [2'] = [U][Z][U)7,[d] =
[U]{a), and [V'] = [U][V] and the rows of [U] are wavelet-like
basis. Because of the compact support property of the wavelet-
like basis, there are only kn[log,(n/k) + 1] nonzero elements
in the matrix U where k is the number of weighting functions
used so that the number of operations for the multiplication
of the dense impedance matrix with the wavelet basis matrix
could be implemented by either a sparse matrix solver or a
tailored routine.

In this letter, the wavelet-like basis is constructed based
on the multiresolution decomposition of the weighted Haar
functions. For a discrete set of points {z1, 2, -, %n} Where
n = 2™k, k and m are positive integers. A k-dimensional
vector space Vp spanned by the Haar functions weighted with
functions W;(x;) is defined as

Vo = span{{W;(z1), W;(x2),- - -,
Wj(x")>|j:1727"'7k}' (3)

We define another 2k-dimensional vector space V_i, which
is also spanned by the weighted Haar functions W;(z;), j =
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Fig. 2. Wavelet-like basis with different support, » = 128 discretization points, and k¥ = 4 and their Fourier transform. (a) Alpert’s wavelets, (b) weighted
Haar wavelets, (c) Fourier transform of the Alpert’s wavelets, and (d) Fourier transform of the weighted Haar wavelets.

]-7 27 ST k9 on {mla T2, am’n/Z} and {xn/Z—i-la T2y >Jf'n}-
The 'decomposition process is repeated until we get the vector
space V_,,,, which is the entire n-dimensional vector space. As
the vector space V_; is a subspace of vector space V_,._q, i.e.,

VWowCV_yC---CV_,, 4

an orthogonal compliment 7_; of V_, is defined such that
V_i—1 = T_; @ V_;. Therefore, the entire vector space V_,,
can be decomposed as follows:
Ve =T1i—m @ Viem
=N O m® Ve
=N @l @13 @ Va_m
[}
.
=T O ® e ® - BT 1OV,
=N @ @D @ - BT 10T ® Vy.(5)

The implementation of the multiresolution decomposition is
based on the Gram—Schmidt orthogonalization process.

II. RESULTS

In this section, the proposed wavelet-like basis are em-
ployed to transform the impedance matrix for the scattering
problem. The weighted functions W, (x;) used are cos[koL -

(1- 0.40;730);—;], j=1,2,---,2k Some weighted wavelet

basis vectors using the oscillatory functions as weighting
functions are shown in Fig. 2(c)—(d). The Alpert’s wavelet
basis vectors, in which the polynomial z ~! are used as
the weighting function, are also shown in Fig. 2(a) and (b).
It shows that some basis vectors of Alpert’s wavelet have
significant components in high spatial frequency, so that the
amplitude of the impedance matrix elements projected on
these vector are large. For the weighted wavelet-like basis,
the spatial frequency components near kg are reduced.

The transformed impedance matrix is thresholded by ze-
roing elements of the impedance matrix with magnitude less
than a tolerance times the maximum element. The percentage
of sparsity (S) and percentage relative error () are defined by

S = 20 % 100% ©6)
n

and
PR
(EA

where ng is the zero elements after thresholding, J/ is the
surface current distribution obtained with thresholding, and ||-||
denotes the L? norm. A typical transformed matrix obtained
using the weighted Haar wavelet-like basis is shown in Fig. 3.
In Fig. 4, the sparsity versus solution error of the problem
is plotted for both weighted wavelet-like basis functions and
Alpert’s wavelet-like basis functions. Its shows that the spar-
sity of the matrix using Alpert’s wavelet-like basis is less than
20% when the discretization size is 0.2X. The results show

x 100% @)
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Fig. 3. 'Wavelet-domain impedance matrix for a TM-polarized plane wave incident on a metallic strip with length 12.8)q. The strip is discretized into

128 pulses and & = 8 is used.
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Fig. 4. Sparsity of the wavelet domain impedance matrix for a TM-polarized
plane wave incident on a metallic strip as a function of solution error.
n = 128,k = 8§,Az = 0.1,0.15 and 0.2X. Solid circle: weighted Haar
wavelet; hollow circle: Alpert’s wavelet.

that the nonzero elements could be increased using tailored
wavelet basis instead of using the conventional wavelet basis
with vanishing moments, such as Alpert’s wavelet basis and
Daubechies’ wavelet basis.

IV. CONCLUSION

The use of the weighted Haar wavelet-like basis to reduce
the impedance matrix for a TM-polarized plane wave incident
on a metallic strip is demonstrated. The sparsity of the present
problem using weighted Haar wavelet-like basis is higher than
using Alpert’s wavelet basis especially for large discretization
size. In addition, the use of tailored wavelet basis should be
extended to two- or even three-dimensional problems.
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